

Tensorflow Unet

[image: Documentation Status]
 [https://u-net.readthedocs.io/en/latest/?badge=latest][image: _images/unet.svg]
 [https://travis-ci.com/jakeret/unet][image: _images/arXiv-1609.09077-orange.svg]
 [http://arxiv.org/abs/1609.09077][image: _images/d32b5755075197b2bbafc215f39561b885eee31c.svg]
 [https://mybinder.org/v2/gh/jakeret/unet/master?filepath=notebooks%2Fcicles.ipynb][image: _images/cb86388937727d8b0a86ab701445bc3562e5d4e2.svg]
 [https://colab.research.google.com/drive/1laPoOaGcqEBB3jTvb-pGnmDU21zwtgJB]This is a generic U-Net implementation as proposed by Ronneberger et al. [https://arxiv.org/pdf/1505.04597.pdf] developed with Tensorflow 2. This project is a reimplementation of the original tf_unet [https://github.com/jakeret/tf_unet].

Originally, the code was developed and used for Radio Frequency Interference mitigation using deep convolutional neural networks [http://arxiv.org/abs/1609.09077] .

The network can be trained to perform image segmentation on arbitrary imaging data. Checkout the Usage [http://u-net.readthedocs.io/en/latest/usage.html] section, the included Jupyter notebooks [https://github.com/jakeret/unet/blob/master/notebooks/circles.ipynb] or on Google Colab [https://colab.research.google.com/drive/1BArjvM_DiPlEfMjVRjlkz4JF2-7movLK] for a toy problem or the Oxford Pet Segmentation example available on Google Colab [https://colab.research.google.com/drive/1laPoOaGcqEBB3jTvb-pGnmDU21zwtgJB].

The code is not tied to a specific segmentation such that it can be used in a toy problem to detect circles in a noisy image.

[image: Segmentation of a toy problem.]
To more complex application such as the detection of radio frequency interference (RFI) in radio astronomy.

[image: Segmentation of RFI in radio data.]
Or to detect galaxies and star in wide field imaging data.

[image: Segmentation of a galaxies.]
The architectural elements of a U-Net consist of a contracting and expanding path:

[image: Unet architecture.]
As you use unet for your exciting discoveries, please cite the paper that describes the package:

@article{akeret2017radio,
 title={Radio frequency interference mitigation using deep convolutional neural networks},
 author={Akeret, Joel and Chang, Chihway and Lucchi, Aurelien and Refregier, Alexandre},
 journal={Astronomy and Computing},
 volume={18},
 pages={35--39},
 year={2017},
 publisher={Elsevier}
}

Contents

	Installation

	Usage

	Module Reference
	unet.unet module

	unet.trainer module

	unet.utils module

	Subpackages

	Submodules

	unet.callbacks module

	unet.metrics module

	unet.schedulers module

	Module contents

	Contributing
	Types of Contributions

	Pull Request Guidelines

	Authors
	Development Lead

	Contributors

	Citations

	Changelog
	Version 0.1

	License

Installation

The project is hosted on GitHub. Get a copy by running:

$ git clone https://github.com/jakeret/unet.git

Install the package like this:

$ cd unet
$ pipenv install --dev

Usage

To use Tensorflow Unet in a project:

import unet
from unet.datasets import circles

#loading the datasets
train_dataset, validation_dataset = circles.load_data(100, nx=200, ny=200,
 splits=(0.8, 0.2))

#building the model
unet_model = unet.build_model(channels=circles.channels,
 num_classes=circles.classes,
 layer_depth=3,
 filters_root=16)

unet.finalize_model(unet_model)

#training and validating the model
trainer = unet.Trainer(checkpoint_callback=False)
trainer.fit(unet_model,
 train_dataset,
 validation_dataset,
 epochs=5,
 batch_size=1)

Once the model is trained it can be saved using Tensorflow’s save format:

from unet import custom_objects
unet_model.save(<save_path>)

and loaded by using:

from unet import custom_objects
reconstructed_model = tf.keras.models.load_model(<save_path>, custom_objects=custom_objects)

Keep track of the learning progress using Tensorboard. unet automatically outputs relevant summaries.

[image: https://raw.githubusercontent.com/jakeret/unet/master/docs/stats.png]

unet package

unet.unet module

	
class unet.unet.ConvBlock(layer_idx, filters_root, kernel_size, dropout_rate, padding, activation, **kwargs)[source]

	Bases: tensorflow.python.keras.engine.base_layer.Layer

	
call(inputs, training=None, **kwargs)[source]

	This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different
from keras API. In keras API, you can pass support masking for
layers as additional arguments. Whereas tf.keras has compute_mask()
method to support masking.

	Parameters

	
	inputs – Input tensor, or list/tuple of input tensors.

	**kwargs – Additional keyword arguments. Currently unused.

	Returns

	A tensor or list/tuple of tensors.

	
get_config()[source]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

	Returns

	Python dictionary.

	
class unet.unet.CropConcatBlock(trainable=True, name=None, dtype=None, dynamic=False, **kwargs)[source]

	Bases: tensorflow.python.keras.engine.base_layer.Layer

	
call(x, down_layer, **kwargs)[source]

	This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different
from keras API. In keras API, you can pass support masking for
layers as additional arguments. Whereas tf.keras has compute_mask()
method to support masking.

	Parameters

	
	inputs – Input tensor, or list/tuple of input tensors.

	**kwargs – Additional keyword arguments. Currently unused.

	Returns

	A tensor or list/tuple of tensors.

	
class unet.unet.UpconvBlock(layer_idx, filters_root, kernel_size, pool_size, padding, activation, **kwargs)[source]

	Bases: tensorflow.python.keras.engine.base_layer.Layer

	
call(inputs, **kwargs)[source]

	This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different
from keras API. In keras API, you can pass support masking for
layers as additional arguments. Whereas tf.keras has compute_mask()
method to support masking.

	Parameters

	
	inputs – Input tensor, or list/tuple of input tensors.

	**kwargs – Additional keyword arguments. Currently unused.

	Returns

	A tensor or list/tuple of tensors.

	
get_config()[source]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

	Returns

	Python dictionary.

	
unet.unet.build_model(nx: Optional[int] = None, ny: Optional[int] = None, channels: int = 1, num_classes: int = 2, layer_depth: int = 5, filters_root: int = 64, kernel_size: int = 3, pool_size: int = 2, dropout_rate: int = 0.5, padding: str = 'valid', activation: Union[str, Callable] = 'relu') → tensorflow.python.keras.engine.training.Model[source]

	Constructs a U-Net model

	Parameters

	
	nx – (Optional) image size on x-axis

	ny – (Optional) image size on y-axis

	channels – number of channels of the input tensors

	num_classes – number of classes

	layer_depth – total depth of unet

	filters_root – number of filters in top unet layer

	kernel_size – size of convolutional layers

	pool_size – size of maxplool layers

	dropout_rate – rate of dropout

	padding – padding to be used in convolutions

	activation – activation to be used

	Returns

	A TF Keras model

	
unet.unet.finalize_model(model: tensorflow.python.keras.engine.training.Model, loss: Union[Callable, str, None] = <function categorical_crossentropy>, optimizer: Optional = None, metrics: Optional[List[Union[Callable, str]]] = None, dice_coefficient: bool = True, auc: bool = True, mean_iou: bool = True, **opt_kwargs)[source]

	Configures the model for training by setting, loss, optimzer, and tracked metrics

	Parameters

	
	model – the model to compile

	loss – the loss to be optimized. Defaults to categorical_crossentropy

	optimizer – the optimizer to use. Defaults to Adam

	metrics – List of metrics to track. Is extended by crossentropy and accuracy

	dice_coefficient – Flag if the dice coefficient metric should be tracked

	auc – Flag if the area under the curve metric should be tracked

	mean_iou – Flag if the mean over intersection over union metric should be tracked

	opt_kwargs – key word arguments passed to default optimizer (Adam), e.g. learning rate

unet.trainer module

	
class unet.trainer.Trainer(name: Optional[str] = 'unet', log_dir_path: Union[pathlib.Path, str, None] = None, checkpoint_callback: Union[tensorflow.python.keras.callbacks.TensorBoard, bool, None] = True, tensorboard_callback: Union[tensorflow.python.keras.callbacks.TensorBoard, bool, None] = True, tensorboard_images_callback: Union[unet.callbacks.TensorBoardImageSummary, bool, None] = True, callbacks: Optional[List[tensorflow.python.keras.callbacks.Callback]] = None, learning_rate_scheduler: Union[unet.schedulers.SchedulerType, tensorflow.python.keras.callbacks.Callback, None] = None, **scheduler_opts)[source]

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Fits a given model to a datasets and configres learning rate schedulers and
various callbacks

	Parameters

	
	name – Name of the model, used to build the target log directory if no explicit path is given

	log_dir_path – Path to the directory where the model and tensorboard summaries should be stored

	checkpoint_callback – Flag if checkpointing should be enabled. Alternatively a callback instance can be passed

	tensorboard_callback – Flag if information should be stored for tensorboard. Alternatively a callback instance can be passed

	tensorboard_images_callback – Flag if intermediate predictions should be stored in Tensorboard. Alternatively a callback instance can be passed

	callbacks – List of additional callbacks

	learning_rate_scheduler – The learning rate to be used. Either None for a constant learning rate, a Callback or a SchedulerType

	scheduler_opts – Further kwargs passed to the learning rate scheduler

	
evaluate(model: tensorflow.python.keras.engine.training.Model, test_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None, shape: Tuple[int, int, int] = None)[source]

	

	
fit(model: tensorflow.python.keras.engine.training.Model, train_dataset: tensorflow.python.data.ops.dataset_ops.DatasetV2, validation_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None, test_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None, epochs=10, batch_size=1, **fit_kwargs)[source]

	Fits the model to the given data

	Parameters

	
	model – The model to be fit

	train_dataset – The dataset used for training

	validation_dataset – (Optional) The dataset used for validation

	test_dataset – (Optional) The dataset used for test

	epochs – Number of epochs

	batch_size – Size of minibatches

	fit_kwargs – Further kwargs passd to model.fit

	
unet.trainer.build_log_dir_path(root: Optional[str] = 'unet') → str[source]

	

unet.utils module

	
unet.utils.crop_image_and_label_to_shape(shape: Tuple[int, int, int])[source]

	

	
unet.utils.crop_labels_to_shape(shape: Tuple[int, int, int])[source]

	

	
unet.utils.crop_to_shape(data, shape: Tuple[int, int, int])[source]

	Crops the array to the given image shape by removing the border

	Parameters

	
	data – the array to crop, expects a tensor of shape [batches, nx, ny, channels]

	shape – the target shape [batches, nx, ny, channels]

	
unet.utils.to_rgb(img: numpy.array)[source]

	Converts the given array into a RGB image and normalizes the values to [0, 1).
If the number of channels is less than 3, the array is tiled such that it has 3 channels.
If the number of channels is greater than 3, only the first 3 channels are used

	Parameters

	img – the array to convert [bs, nx, ny, channels]

	Returns img

	the rgb image [bs, nx, ny, 3]

Subpackages

	unet.datasets package
	Submodules

	unet.datasets.circles module

	unet.datasets.oxford_iiit_pet module

	Module contents

Submodules

unet.callbacks module

	
class unet.callbacks.TensorBoardImageSummary(name, logdir: str, dataset: tensorflow.python.data.ops.dataset_ops.DatasetV2, max_outputs: int = None)[source]

	Bases: tensorflow.python.keras.callbacks.Callback

	
combine_to_image(images: numpy.array, labels: numpy.array, predictions: numpy.array) → numpy.array[source]

	Concatenates the three tensors to one RGB image

	Parameters

	
	images – images tensor, shape [None, nx, ny, channels]

	labels – labels tensor, shape [None, nx, ny, 1] for sparse or [None, nx, ny, classes] for one-hot

	predictions – labels tensor, shape [None, nx, ny, classes]

	Returns

	image tensor, shape [None, nx, 3 x ny, 3]

	
on_epoch_end(epoch, logs=None)[source]

	Called at the end of an epoch.

Subclasses should override for any actions to run. This function should only
be called during TRAIN mode.

	Parameters

	
	epoch – Integer, index of epoch.

	logs –
	Dict, metric results for this training epoch, and for the

	validation epoch if validation is performed. Validation result keys
are prefixed with val_. For training epoch, the values of the

Model’s metrics are returned. Example : {‘loss’: 0.2, ‘acc’: 0.7}.

	
class unet.callbacks.TensorBoardWithLearningRate(log_dir='logs', histogram_freq=0, write_graph=True, write_images=False, update_freq='epoch', profile_batch=2, embeddings_freq=0, embeddings_metadata=None, **kwargs)[source]

	Bases: tensorflow.python.keras.callbacks.TensorBoard

	
on_epoch_end(batch, logs=None)[source]

	Runs metrics and histogram summaries at epoch end.

unet.metrics module

	
unet.metrics.dice_coefficient(y_true, y_pred, smooth=1)[source]

	

	
unet.metrics.mean_iou(y_true, y_pred)[source]

	

unet.schedulers module

	
class unet.schedulers.LearningRateScheduler(schedule: Callable[[int], float], steps_per_epoch: int, verbose=0)[source]

	Bases: tensorflow.python.keras.callbacks.Callback

Learning rate scheduler.
:param schedule: a function that takes an step index as input

(integer, indexed from 0) and returns a new
learning rate as output (float).

	Parameters

	verbose – int. 0: quiet, 1: update messages.

	
on_epoch_end(epoch, logs=None)[source]

	Called at the end of an epoch.

Subclasses should override for any actions to run. This function should only
be called during TRAIN mode.

	Parameters

	
	epoch – Integer, index of epoch.

	logs –
	Dict, metric results for this training epoch, and for the

	validation epoch if validation is performed. Validation result keys
are prefixed with val_. For training epoch, the values of the

Model’s metrics are returned. Example : {‘loss’: 0.2, ‘acc’: 0.7}.

	
on_train_batch_begin(batch, logs=None)[source]

	Called at the beginning of a training batch in fit methods.

Subclasses should override for any actions to run.

Note that if the steps_per_execution argument to compile in
tf.keras.Model is set to N, this method will only be called every N
batches.

	Parameters

	
	batch – Integer, index of batch within the current epoch.

	logs – Dict, contains the return value of model.train_step. Typically,
the values of the Model’s metrics are returned. Example:
{‘loss’: 0.2, ‘accuracy’: 0.7}.

	
on_train_batch_end(batch, logs=None)[source]

	Called at the end of a training batch in fit methods.

Subclasses should override for any actions to run.

Note that if the steps_per_execution argument to compile in
tf.keras.Model is set to N, this method will only be called every N
batches.

	Parameters

	
	batch – Integer, index of batch within the current epoch.

	logs – Dict. Aggregated metric results up until this batch.

	
class unet.schedulers.SchedulerType[source]

	Bases: enum.Enum [https://docs.python.org/3.7/library/enum.html#enum.Enum]

An enumeration.

	
WARMUP_LINEAR_DECAY = 'warmup-linear-decay'

	

	
class unet.schedulers.WarmupLinearDecaySchedule(warmup_steps, total_steps, learning_rate, min_lr=0.0)[source]

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

Linear warmup and then linear decay.
Linearly increases learning rate from 0 to 1 over warmup_steps training steps.
Linearly decreases learning rate from 1. to 0. over remaining t_total - warmup_steps steps.

	
unet.schedulers.get(scheduler: unet.schedulers.SchedulerType, train_dataset_size: int, learning_rate: float, **hyperparams)[source]

	

Module contents

unet.datasets package

Submodules

unet.datasets.circles module

	
unet.datasets.circles.load_data(count: int, splits: Tuple[float] = (0.7, 0.2, 0.1), **kwargs) → List[tensorflow.python.data.ops.dataset_ops.DatasetV2]

	

unet.datasets.oxford_iiit_pet module

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Implement Features

Write Documentation

Tensorflow Unet could always use more documentation, whether as part of the
official Tensorflow Unet docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy.
make sure that the tests pass for all supported Python versions.

Credits

Development Lead

	@jakeret [https://github.com/jakeret]

Contributors

	@tdrobbins [https://github.com/tdrobbins]

	@ck090 [https://github.com/ck090]

	gokarslan [https://github.com/gokarslan]

Citations

As you use unet for your exciting discoveries, please cite the paper that describes the package:

J. Akeret, C. Chang, A. Lucchi, A. Refregier, Published in Astronomy and Computing (2017) [https://arxiv.org/abs/1609.09077]

Changelog

Version 0.1

	Feature A added

	FIX: nasty bug #1729 fixed

	add your changes here!

License

	GNU GENERAL PUBLIC LICENSE

	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official

standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that

same work.

	Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,

if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

 Python Module Index

 u

 		 	

 		
 u	

 	[image: -]
 	
 unet	

 	
 	
 unet.callbacks	

 	
 	
 unet.datasets	

 	
 	
 unet.datasets.circles	

 	
 	
 unet.metrics	

 	
 	
 unet.schedulers	

 	
 	
 unet.trainer	

 	
 	
 unet.unet	

 	
 	
 unet.utils	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | O
 | S
 | T
 | U
 | W

B

 	
 	build_log_dir_path() (in module unet.trainer)

 	
 	build_model() (in module unet.unet)

C

 	
 	call() (unet.unet.ConvBlock method)

 	(unet.unet.CropConcatBlock method)

 	(unet.unet.UpconvBlock method)

 	combine_to_image() (unet.callbacks.TensorBoardImageSummary method)

 	
 	ConvBlock (class in unet.unet)

 	crop_image_and_label_to_shape() (in module unet.utils)

 	crop_labels_to_shape() (in module unet.utils)

 	crop_to_shape() (in module unet.utils)

 	CropConcatBlock (class in unet.unet)

D

 	
 	dice_coefficient() (in module unet.metrics)

E

 	
 	evaluate() (unet.trainer.Trainer method)

F

 	
 	finalize_model() (in module unet.unet)

 	
 	fit() (unet.trainer.Trainer method)

G

 	
 	get() (in module unet.schedulers)

 	
 	get_config() (unet.unet.ConvBlock method)

 	(unet.unet.UpconvBlock method)

L

 	
 	LearningRateScheduler (class in unet.schedulers)

 	
 	load_data() (in module unet.datasets.circles)

M

 	
 	mean_iou() (in module unet.metrics)

O

 	
 	on_epoch_end() (unet.callbacks.TensorBoardImageSummary method)

 	(unet.callbacks.TensorBoardWithLearningRate method)

 	(unet.schedulers.LearningRateScheduler method)

 	
 	on_train_batch_begin() (unet.schedulers.LearningRateScheduler method)

 	on_train_batch_end() (unet.schedulers.LearningRateScheduler method)

S

 	
 	SchedulerType (class in unet.schedulers)

T

 	
 	TensorBoardImageSummary (class in unet.callbacks)

 	TensorBoardWithLearningRate (class in unet.callbacks)

 	
 	to_rgb() (in module unet.utils)

 	Trainer (class in unet.trainer)

U

 	
 	unet (module)

 	unet.callbacks (module)

 	unet.datasets (module)

 	unet.datasets.circles (module)

 	unet.metrics (module)

 	
 	unet.schedulers (module)

 	unet.trainer (module)

 	unet.unet (module)

 	unet.utils (module)

 	UpconvBlock (class in unet.unet)

W

 	
 	WARMUP_LINEAR_DECAY (unet.schedulers.SchedulerType attribute)

 	
 	WarmupLinearDecaySchedule (class in unet.schedulers)

 All modules for which code is available

	unet.callbacks

	unet.datasets.circles

	unet.metrics

	unet.schedulers

	unet.trainer

	unet.unet

	unet.utils

 Source code for unet.callbacks

from pathlib import Path

import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.callbacks import TensorBoard, Callback

from unet import utils

[docs]class TensorBoardImageSummary(Callback):

 def __init__(self, name,
 logdir: str,
 dataset: tf.data.Dataset,
 max_outputs: int = None):
 self.name = name
 self.logdir = str(Path(logdir) / "summaries")
 if max_outputs is None:
 max_outputs = self.images.shape[0]
 self.max_outputs = max_outputs

 self.dataset = dataset.take(self.max_outputs)

 self.file_writer = tf.summary.create_file_writer(self.logdir)

 super().__init__()

[docs] def on_epoch_end(self, epoch, logs=None):
 predictions = self.model.predict(self.dataset.batch(batch_size=1))

 self._log_histogramms(epoch, predictions)

 self._log_image_summaries(epoch, predictions)

 self.file_writer.flush()

 def _log_image_summaries(self, epoch, predictions):
 cropped_images, cropped_labels = list(self.dataset
 .map(utils.crop_image_and_label_to_shape(predictions.shape[1:]))
 .take(self.max_outputs)
 .batch(self.max_outputs))[0]

 output = self.combine_to_image(cropped_images.numpy(),
 cropped_labels.numpy(),
 predictions)

 with self.file_writer.as_default():
 tf.summary.image(self.name,
 output,
 step=epoch,
 max_outputs=self.max_outputs)

[docs] def combine_to_image(self, images: np.array, labels: np.array, predictions: np.array) -> np.array:
 """
 Concatenates the three tensors to one RGB image

 :param images: images tensor, shape [None, nx, ny, channels]
 :param labels: labels tensor, shape [None, nx, ny, 1] for sparse or [None, nx, ny, classes] for one-hot
 :param predictions: labels tensor, shape [None, nx, ny, classes]

 :return: image tensor, shape [None, nx, 3 x ny, 3]
 """

 if predictions.shape[-1] == 2:
 mask = predictions[..., :1]
 else:
 mask = np.argmax(predictions, axis=-1)[..., np.newaxis]

 output = np.concatenate((utils.to_rgb(images),
 utils.to_rgb(labels[..., :1]),
 utils.to_rgb(mask)),
 axis=2)
 return output

 def _log_histogramms(self, epoch, predictions):
 with self.file_writer.as_default():
 tf.summary.histogram(self.name + "_prediction_histograms",
 predictions,
 step=epoch,
 buckets=30,
 description=None)

[docs]class TensorBoardWithLearningRate(TensorBoard):
[docs] def on_epoch_end(self, batch, logs=None):
 logs = logs or {}
 logs['learning_rate'] = K.get_value(self.model.optimizer.lr)
 super().on_epoch_end(batch, logs)

 Source code for unet.metrics

import tensorflow as tf

[docs]def mean_iou(y_true, y_pred):
 y_true = tf.cast(y_true, tf.dtypes.float64)
 y_pred = tf.cast(y_pred, tf.dtypes.float64)
 I = tf.reduce_sum(y_pred * y_true, axis=(1, 2))
 U = tf.reduce_sum(y_pred + y_true, axis=(1, 2)) - I
 return tf.reduce_mean(I / U)

[docs]def dice_coefficient(y_true, y_pred, smooth=1):
 intersection = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])
 union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3])
 dice = tf.reduce_mean((2. * intersection + smooth) / (union + smooth), axis=0)
 return dice

 Source code for unet.schedulers

import logging
from enum import Enum
from typing import Callable

import tensorflow as tf
import tensorflow.keras.backend as K

logger = logging.getLogger(__name__)

[docs]class SchedulerType(Enum):
 WARMUP_LINEAR_DECAY = "warmup-linear-decay"

[docs]def get(scheduler:SchedulerType, train_dataset_size:int, learning_rate:float, **hyperparams):
 if scheduler == SchedulerType.WARMUP_LINEAR_DECAY:
 batch_size = hyperparams["batch_size"]
 steps_per_epoch = (train_dataset_size + batch_size - 1) // batch_size
 total_steps = steps_per_epoch * hyperparams["epochs"]
 warmup_steps = int(total_steps * hyperparams["warmup_proportion"])
 logger.info("Total steps %s, warum steps %s", total_steps, warmup_steps)

 schedule = WarmupLinearDecaySchedule(warmup_steps, total_steps, learning_rate)
 return LearningRateScheduler(schedule, steps_per_epoch, verbose=0)
 else:
 raise ValueError("Unknown scheduler %s"%scheduler)

[docs]class LearningRateScheduler(tf.keras.callbacks.Callback):
 # Currently, the optimizers in TF2 don't properly support LR schedulers as callable.
 # As alternative we have to use a Keras callback which only allows for updating the LR per batch instead per step

 """Learning rate scheduler.
 Arguments:
 schedule: a function that takes an step index as input
 (integer, indexed from 0) and returns a new
 learning rate as output (float).
 verbose: int. 0: quiet, 1: update messages.
 """

 def __init__(self, schedule:Callable[[int], float], steps_per_epoch:int, verbose=0):
 super(LearningRateScheduler, self).__init__()
 self.schedule = schedule
 self.steps_per_epoch = steps_per_epoch
 self.verbose = verbose
 self._current_step = 0

[docs] def on_train_batch_begin(self, batch, logs=None):
 new_lr = self.schedule(self._current_step)

 K.set_value(self.model.optimizer.lr, new_lr)

 self._current_step += 1

 if self.verbose > 0:
 logger.info('\nBatch %05d: LearningRateScheduler changing learning rate to %s.', batch + 1, new_lr)

[docs] def on_epoch_end(self, epoch, logs=None):
 logs = logs or {}
 logs['learning_rate'] = K.get_value(self.model.optimizer.lr)

[docs] def on_train_batch_end(self, batch, logs=None):
 logs = logs or {}
 logs['learning_rate'] = K.get_value(self.model.optimizer.lr)

[docs]class WarmupLinearDecaySchedule:
 """ Linear warmup and then linear decay.
 Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
 Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps.
 """
 def __init__(self, warmup_steps, total_steps, learning_rate, min_lr=0.0):
 self.warmup_steps = warmup_steps
 self.total_steps = total_steps
 self.initial_learning_rate = learning_rate
 self.min_lr = min_lr
 self.decay_steps = max(1.0, self.total_steps - self.warmup_steps)

 def __call__(self, step):
 if step < self.warmup_steps:
 learning_rate = self.initial_learning_rate * float(step) / max(1., self.warmup_steps)
 else:
 decay_factor = max(0, (self.total_steps - step) / self.decay_steps)
 learning_rate = self.min_lr + (self.initial_learning_rate - self.min_lr) * decay_factor

 return learning_rate

 Source code for unet.trainer

from datetime import datetime
from pathlib import Path
from typing import Union, List, Optional, Tuple

import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard

from unet import utils, schedulers
from unet.callbacks import TensorBoardWithLearningRate, TensorBoardImageSummary
from unet.schedulers import SchedulerType

[docs]class Trainer:
 """
 Fits a given model to a datasets and configres learning rate schedulers and
 various callbacks

 :param name: Name of the model, used to build the target log directory if no explicit path is given
 :param log_dir_path: Path to the directory where the model and tensorboard summaries should be stored
 :param checkpoint_callback: Flag if checkpointing should be enabled. Alternatively a callback instance can be passed
 :param tensorboard_callback: Flag if information should be stored for tensorboard. Alternatively a callback instance can be passed
 :param tensorboard_images_callback: Flag if intermediate predictions should be stored in Tensorboard. Alternatively a callback instance can be passed
 :param callbacks: List of additional callbacks
 :param learning_rate_scheduler: The learning rate to be used. Either None for a constant learning rate, a `Callback` or a `SchedulerType`
 :param scheduler_opts: Further kwargs passed to the learning rate scheduler
 """

 def __init__(self,
 name: Optional[str]="unet",
 log_dir_path: Optional[Union[Path, str]]=None,
 checkpoint_callback: Optional[Union[TensorBoard, bool]] = True,
 tensorboard_callback: Optional[Union[TensorBoard, bool]] = True,
 tensorboard_images_callback: Optional[Union[TensorBoardImageSummary, bool]] = True,
 callbacks: Union[List[Callback], None]=None,
 learning_rate_scheduler: Optional[Union[SchedulerType, Callback]]=None,
 **scheduler_opts,
):
 self.checkpoint_callback = checkpoint_callback
 self.tensorboard_callback = tensorboard_callback
 self.tensorboard_images_callback = tensorboard_images_callback
 self.callbacks = callbacks
 self.learning_rate_scheduler = learning_rate_scheduler
 self.scheduler_opts=scheduler_opts

 if log_dir_path is None:
 log_dir_path = build_log_dir_path(name)
 if isinstance(log_dir_path, Path):
 log_dir_path = str(log_dir_path)

 self.log_dir_path = log_dir_path

[docs] def fit(self,
 model: Model,
 train_dataset: tf.data.Dataset,
 validation_dataset: Optional[tf.data.Dataset]=None,
 test_dataset: Optional[tf.data.Dataset]=None,
 epochs=10,
 batch_size=1,
 **fit_kwargs):
 """
 Fits the model to the given data

 :param model: The model to be fit
 :param train_dataset: The dataset used for training
 :param validation_dataset: (Optional) The dataset used for validation
 :param test_dataset: (Optional) The dataset used for test
 :param epochs: Number of epochs
 :param batch_size: Size of minibatches
 :param fit_kwargs: Further kwargs passd to `model.fit`
 """

 prediction_shape = self._get_output_shape(model, train_dataset)[1:]

 learning_rate_scheduler = self._build_learning_rate_scheduler(train_dataset=train_dataset,
 batch_size=batch_size,
 epochs=epochs,
 **self.scheduler_opts)

 callbacks = self._build_callbacks(train_dataset,
 validation_dataset)

 if learning_rate_scheduler:
 callbacks += [learning_rate_scheduler]

 train_dataset = train_dataset.map(utils.crop_labels_to_shape(prediction_shape)).batch(batch_size)

 if validation_dataset:
 validation_dataset = validation_dataset.map(utils.crop_labels_to_shape(prediction_shape)).batch(batch_size)

 history = model.fit(train_dataset,
 validation_data=validation_dataset,
 epochs=epochs,
 callbacks=callbacks,
 **fit_kwargs)

 self.evaluate(model, test_dataset, prediction_shape)

 return history

 def _get_output_shape(self,
 model: Model,
 train_dataset: tf.data.Dataset):
 return model.predict(train_dataset
 .take(count=1)
 .batch(batch_size=1)
).shape

 def _build_callbacks(self,
 train_dataset: Optional[tf.data.Dataset],
 validation_dataset: Optional[tf.data.Dataset]) -> List[Callback]:
 if self.callbacks:
 callbacks = self.callbacks
 else:
 callbacks = []

 if isinstance(self.checkpoint_callback, Callback):
 callbacks.append(self.checkpoint_callback)
 elif self.checkpoint_callback:
 callbacks.append(ModelCheckpoint(self.log_dir_path,
 save_best_only=True))

 if isinstance(self.tensorboard_callback, Callback):
 callbacks.append(self.tensorboard_callback)
 elif self.tensorboard_callback:
 callbacks.append(TensorBoardWithLearningRate(self.log_dir_path))

 if isinstance(self.tensorboard_images_callback, Callback):
 callbacks.append(self.tensorboard_images_callback)
 elif self.tensorboard_images_callback:
 tensorboard_image_summary = TensorBoardImageSummary("train",
 self.log_dir_path,
 dataset=train_dataset,
 max_outputs=6)
 callbacks.append(tensorboard_image_summary)

 if validation_dataset:
 tensorboard_image_summary = TensorBoardImageSummary("validation",
 self.log_dir_path,
 dataset=validation_dataset,
 max_outputs=6)
 callbacks.append(tensorboard_image_summary)

 return callbacks

 def _build_learning_rate_scheduler(self,
 train_dataset: tf.data.Dataset,
 **scheduler_opts
) -> Optional[Callback]:

 if self.learning_rate_scheduler is None:
 return None

 if isinstance(self.learning_rate_scheduler, Callback):
 return self.learning_rate_scheduler

 elif isinstance(self.learning_rate_scheduler, SchedulerType):
 train_dataset_size = tf.data.experimental.cardinality(train_dataset).numpy()
 learning_rate_scheduler = schedulers.get(
 scheduler=self.learning_rate_scheduler,
 train_dataset_size=train_dataset_size,
 **scheduler_opts)

 return learning_rate_scheduler

[docs] def evaluate(self,
 model:Model,
 test_dataset: Optional[tf.data.Dataset]=None,
 shape:Tuple[int, int, int]=None):

 if test_dataset:
 model.evaluate(test_dataset
 .map(utils.crop_labels_to_shape(shape))
 .batch(batch_size=1)
)

[docs]def build_log_dir_path(root: Optional[str]= "unet") -> str:
 return str(Path(root) / datetime.now().strftime("%Y-%m-%dT%H-%M_%S"))

 Source code for unet.unet

from typing import Optional, Union, Callable, List

import numpy as np
import tensorflow as tf
from tensorflow.keras import Model, Input
from tensorflow.keras import layers
from tensorflow.keras import losses
from tensorflow.keras.initializers import TruncatedNormal
from tensorflow.keras.optimizers import Adam

import unet.metrics

[docs]class ConvBlock(layers.Layer):

 def __init__(self, layer_idx, filters_root, kernel_size, dropout_rate, padding, activation, **kwargs):
 super(ConvBlock, self).__init__(**kwargs)
 self.layer_idx=layer_idx
 self.filters_root=filters_root
 self.kernel_size=kernel_size
 self.dropout_rate=dropout_rate
 self.padding=padding
 self.activation=activation

 filters = _get_filter_count(layer_idx, filters_root)
 self.conv2d_1 = layers.Conv2D(filters=filters,
 kernel_size=(kernel_size, kernel_size),
 kernel_initializer=_get_kernel_initializer(filters, kernel_size),
 strides=1,
 padding=padding)
 self.dropout_1 = layers.Dropout(rate=dropout_rate)
 self.activation_1 = layers.Activation(activation)

 self.conv2d_2 = layers.Conv2D(filters=filters,
 kernel_size=(kernel_size, kernel_size),
 kernel_initializer=_get_kernel_initializer(filters, kernel_size),
 strides=1,
 padding=padding)
 self.dropout_2 = layers.Dropout(rate=dropout_rate)
 self.activation_2 = layers.Activation(activation)

[docs] def call(self, inputs, training=None, **kwargs):
 x = inputs
 x = self.conv2d_1(x)

 if training:
 x = self.dropout_1(x)
 x = self.activation_1(x)
 x = self.conv2d_2(x)

 if training:
 x = self.dropout_2(x)

 x = self.activation_2(x)
 return x

[docs] def get_config(self):
 return dict(layer_idx=self.layer_idx,
 filters_root=self.filters_root,
 kernel_size=self.kernel_size,
 dropout_rate=self.dropout_rate,
 padding=self.padding,
 activation=self.activation,
 **super(ConvBlock, self).get_config(),
)

[docs]class UpconvBlock(layers.Layer):

 def __init__(self, layer_idx, filters_root, kernel_size, pool_size, padding, activation, **kwargs):
 super(UpconvBlock, self).__init__(**kwargs)
 self.layer_idx=layer_idx
 self.filters_root=filters_root
 self.kernel_size=kernel_size
 self.pool_size=pool_size
 self.padding=padding
 self.activation=activation

 filters = _get_filter_count(layer_idx + 1, filters_root)
 self.upconv = layers.Conv2DTranspose(filters // 2,
 kernel_size=(pool_size, pool_size),
 kernel_initializer=_get_kernel_initializer(filters, kernel_size),
 strides=pool_size, padding=padding)

 self.activation_1 = layers.Activation(activation)

[docs] def call(self, inputs, **kwargs):
 x = inputs
 x = self.upconv(x)
 x = self.activation_1(x)
 return x

[docs] def get_config(self):
 return dict(layer_idx=self.layer_idx,
 filters_root=self.filters_root,
 kernel_size=self.kernel_size,
 pool_size=self.pool_size,
 padding=self.padding,
 activation=self.activation,
 **super(UpconvBlock, self).get_config(),
)

[docs]class CropConcatBlock(layers.Layer):

[docs] def call(self, x, down_layer, **kwargs):
 x1_shape = tf.shape(down_layer)
 x2_shape = tf.shape(x)

 height_diff = (x1_shape[1] - x2_shape[1]) // 2
 width_diff = (x1_shape[2] - x2_shape[2]) // 2

 down_layer_cropped = down_layer[:,
 height_diff: (x2_shape[1] + height_diff),
 width_diff: (x2_shape[2] + width_diff),
 :]

 x = tf.concat([down_layer_cropped, x], axis=-1)
 return x

[docs]def build_model(nx: Optional[int] = None,
 ny: Optional[int] = None,
 channels: int = 1,
 num_classes: int = 2,
 layer_depth: int = 5,
 filters_root: int = 64,
 kernel_size: int = 3,
 pool_size: int = 2,
 dropout_rate: int = 0.5,
 padding:str="valid",
 activation:Union[str, Callable]="relu") -> Model:
 """
 Constructs a U-Net model

 :param nx: (Optional) image size on x-axis
 :param ny: (Optional) image size on y-axis
 :param channels: number of channels of the input tensors
 :param num_classes: number of classes
 :param layer_depth: total depth of unet
 :param filters_root: number of filters in top unet layer
 :param kernel_size: size of convolutional layers
 :param pool_size: size of maxplool layers
 :param dropout_rate: rate of dropout
 :param padding: padding to be used in convolutions
 :param activation: activation to be used

 :return: A TF Keras model
 """

 inputs = Input(shape=(nx, ny, channels), name="inputs")

 x = inputs
 contracting_layers = {}

 conv_params = dict(filters_root=filters_root,
 kernel_size=kernel_size,
 dropout_rate=dropout_rate,
 padding=padding,
 activation=activation)

 for layer_idx in range(0, layer_depth - 1):
 x = ConvBlock(layer_idx, **conv_params)(x)
 contracting_layers[layer_idx] = x
 x = layers.MaxPooling2D((pool_size, pool_size))(x)

 x = ConvBlock(layer_idx + 1, **conv_params)(x)

 for layer_idx in range(layer_idx, -1, -1):
 x = UpconvBlock(layer_idx,
 filters_root,
 kernel_size,
 pool_size,
 padding,
 activation)(x)
 x = CropConcatBlock()(x, contracting_layers[layer_idx])
 x = ConvBlock(layer_idx, **conv_params)(x)

 x = layers.Conv2D(filters=num_classes,
 kernel_size=(1, 1),
 kernel_initializer=_get_kernel_initializer(filters_root, kernel_size),
 strides=1,
 padding=padding)(x)

 x = layers.Activation(activation)(x)
 outputs = layers.Activation("softmax", name="outputs")(x)
 model = Model(inputs, outputs, name="unet")

 return model

def _get_filter_count(layer_idx, filters_root):
 return 2 ** layer_idx * filters_root

def _get_kernel_initializer(filters, kernel_size):
 stddev = np.sqrt(2 / (kernel_size ** 2 * filters))
 return TruncatedNormal(stddev=stddev)

[docs]def finalize_model(model: Model,
 loss: Optional[Union[Callable, str]]=losses.categorical_crossentropy,
 optimizer: Optional= None,
 metrics:Optional[List[Union[Callable,str]]]=None,
 dice_coefficient: bool=True,
 auc: bool=True,
 mean_iou: bool=True,
 **opt_kwargs):
 """
 Configures the model for training by setting, loss, optimzer, and tracked metrics

 :param model: the model to compile
 :param loss: the loss to be optimized. Defaults to `categorical_crossentropy`
 :param optimizer: the optimizer to use. Defaults to `Adam`
 :param metrics: List of metrics to track. Is extended by `crossentropy` and `accuracy`
 :param dice_coefficient: Flag if the dice coefficient metric should be tracked
 :param auc: Flag if the area under the curve metric should be tracked
 :param mean_iou: Flag if the mean over intersection over union metric should be tracked
 :param opt_kwargs: key word arguments passed to default optimizer (Adam), e.g. learning rate
 """

 if optimizer is None:
 optimizer = Adam(**opt_kwargs)

 if metrics is None:
 metrics = ['categorical_crossentropy',
 'categorical_accuracy',
]

 if mean_iou:
 metrics += [unet.metrics.mean_iou]

 if dice_coefficient:
 metrics += [unet.metrics.dice_coefficient]

 if auc:
 metrics += [tf.keras.metrics.AUC()]

 model.compile(loss=loss,
 optimizer=optimizer,
 metrics=metrics,
)

 Source code for unet.utils

from typing import Tuple

import numpy as np

[docs]def crop_to_shape(data, shape: Tuple[int, int, int]):
 """
 Crops the array to the given image shape by removing the border

 :param data: the array to crop, expects a tensor of shape [batches, nx, ny, channels]
 :param shape: the target shape [batches, nx, ny, channels]
 """
 diff_nx = (data.shape[0] - shape[0])
 diff_ny = (data.shape[1] - shape[1])

 if diff_nx == 0 and diff_ny == 0:
 return data

 offset_nx_left = diff_nx // 2
 offset_nx_right = diff_nx - offset_nx_left
 offset_ny_left = diff_ny // 2
 offset_ny_right = diff_ny - offset_ny_left

 cropped = data[offset_nx_left:(-offset_nx_right), offset_ny_left:(-offset_ny_right)]

 assert cropped.shape[0] == shape[0]
 assert cropped.shape[1] == shape[1]
 return cropped

[docs]def crop_labels_to_shape(shape: Tuple[int, int, int]):
 def crop(image, label):
 return image, crop_to_shape(label, shape)
 return crop

[docs]def crop_image_and_label_to_shape(shape: Tuple[int, int, int]):
 def crop(image, label):
 return crop_to_shape(image, shape), \
 crop_to_shape(label, shape)
 return crop

[docs]def to_rgb(img: np.array):
 """
 Converts the given array into a RGB image and normalizes the values to [0, 1).
 If the number of channels is less than 3, the array is tiled such that it has 3 channels.
 If the number of channels is greater than 3, only the first 3 channels are used

 :param img: the array to convert [bs, nx, ny, channels]

 :returns img: the rgb image [bs, nx, ny, 3]
 """
 img = img.astype(np.float32)
 img = np.atleast_3d(img)

 channels = img.shape[-1]
 if channels == 1:
 img = np.tile(img, 3)

 elif channels == 2:
 img = np.concatenate((img, img[..., :1]), axis=-1)

 elif channels > 3:
 img = img[..., :3]

 img[np.isnan(img)] = 0
 img -= np.amin(img)
 if np.amax(img) != 0:
 img /= np.amax(img)

 return img

 Source code for unet.datasets.circles

from typing import Tuple, List

import numpy as np
import tensorflow as tf

channels = 1
classes = 2

[docs]def load_data(count:int, splits:Tuple[float]=(0.7, 0.2, 0.1), **kwargs) -> List[tf.data.Dataset]:
 return [tf.data.Dataset.from_tensor_slices(_build_samples(int(split * count), **kwargs))
 for split in splits]

def _build_samples(sample_count:int, nx:int, ny:int, **kwargs) -> Tuple[np.array, np.array]:
 images = np.empty((sample_count, nx, ny, 1))
 labels = np.empty((sample_count, nx, ny, 2))
 for i in range(sample_count):
 image, mask = _create_image_and_mask(nx, ny, **kwargs)
 images[i] = image
 labels[i, ..., 0] = ~mask
 labels[i, ..., 1] = mask
 return images, labels

def _create_image_and_mask(nx, ny, cnt=10, r_min=3, r_max=10, border=32, sigma=20):
 image = np.ones((nx, ny, 1))
 mask = np.zeros((nx, ny), dtype=np.bool)

 for _ in range(cnt):
 a = np.random.randint(border, nx - border)
 b = np.random.randint(border, ny - border)
 r = np.random.randint(r_min, r_max)
 h = np.random.randint(1, 255)

 y, x = np.ogrid[-a:nx - a, -b:ny - b]
 m = x * x + y * y <= r * r
 mask = np.logical_or(mask, m)

 image[m] = h

 image += np.random.normal(scale=sigma, size=image.shape)
 image -= np.amin(image)
 image /= np.amax(image)

 return image, mask

unet

	unet package
	unet.unet module

	unet.trainer module

	unet.utils module

	Subpackages
	unet.datasets package
	Submodules

	unet.datasets.circles module

	unet.datasets.oxford_iiit_pet module

	Module contents

	Submodules

	unet.callbacks module

	unet.metrics module

	unet.schedulers module

	Module contents

 _static/comment.png

_static/down-pressed.png

_static/file.png

_images/galaxies.png
Input Thresholded prediction

_static/minus.png

_static/down.png

_images/unet.png
;
SNty

_static/up-pressed.png

_static/up.png

_images/rfi.png
-
-
al
o

-
-
o
o

N
I
=
>
<)
c
[}
>
o
9}
2
e

i o o R B b s b

00:00 05:00 10:00 15:00 20:00 00:00 05:00 10:00 15:00 20:00
Time [h] Time [h]

_static/plus.png

_images/toy_problem.png
Ground truth

Prediction

¥

€.

nav.xhtml

 Table of Contents

 		
 Tensorflow Unet

 		
 Installation

 		
 Usage

 		
 Module Reference

 		
 unet.unet module

 		
 unet.trainer module

 		
 unet.utils module

 		
 Subpackages

 		
 unet.datasets package

 		
 Submodules

 		
 unet.callbacks module

 		
 unet.metrics module

 		
 unet.schedulers module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Pull Request Guidelines

 		
 Authors

 		
 Development Lead

 		
 Contributors

 		
 Citations

 		
 Changelog

 		
 Version 0.1

 		
 License

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

